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Abstract. We report a simple and efficient method for including thermal expansion at high 
temperatures for solids in molecular dynamics simulations. The method is based on the 
application of the bulk modulus and the virial theorem for internal microscopic stress to 
allow a system to expand for a desired temperature. With appropriate scaling. zero-external- 
pressure conditions can be achieved rapidly. We also discuss techniques developed in this 
work for establishing thermal equilibrium of a solid at various temperatures, including the 
use of the equipartition-of-energy theorem as a criterion at low temperatures. The results of 
molecular dynamics simulations show good agreement with the experimental data for rare 
gas and ionic crystals. 

1. Introduction 

For many years, molecular dynamics (MD) simulations have been widely used to study 
various properties of solids and liquids [l,  21. By this method, one can investigate 
macroscopic properties in terms of microscopic picture of atomic motion in a system. 
For example, one of the M D  calculations is to study ionic diffusion in superionic con- 
ductors [3]. This simulation method has also been applied to study thermal conduction 
in solids as well as ejection mechanisms of energetic particle bombarded semiconductors 
and metals [4,5]. Furthermore, MD calculations are employed to study melting pheno- 
mena in solids [6]. 

In many cases, achieving thermal equilibrium for solids is the first step to obtain a 
well behaved system with the correct thermal properties such as average temperature, 
kinetic and potential energy, and pressure. In particular, quantitative confirmation of 
such a thermal equilibrium state in MD calculations has been ignored [ 7 ] .  In practice, a 
computer simulation often starts with a uniform velocity distribution for atoms in the 
solids, and no initial vibrational displacements are included. From these unrealistic 
initial conditions, the system has to be allowed to run for several thousand time steps 
for thermalization to occur [7]. 

Secondly, at high temperatures, the anharmonic nature of the atomic interaction 
becomes more significant and leads to thermal expansion and other effects. MD cal- 
culations should take these effects into account by allowing the system to expand until 
zero external pressure is obtained. Neglect of these effects causes simulation results to 

t Current address: Department 2G8, Building 030-1, IBM Co. ,  Rochester, MN 55901, USA. 
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deviate from experimental data. The studies of ionic motion in Ag,S and a-AgI, have 
revealed that the mean square displacements of ions are smaller than those obtained 
from experiments [ 3 ] .  

Several Comprehensive methods of allowing the volume to change in MD simulations 
have been proposed by Anderson [8]  and developed by Parrinello and Rahman [9]. They 
introduce a dynamic h tensor in the Hamiltonian with a phenomenological parameter R ,  
referred to as the extended mass. This tensor characterizes the time variation of the MD 
cell in size and shape in response to differences between the internal microscopic stress 
and external pressure. The new approach allows formulation of several different kinds 
of ensembles for MD calculations. Ray has discussed the microcanonical [EVN] and the 
[ H P N ]  ensembles in detail [ lo ,  111. 

Haile and Graben have applied the new M D  methods to study thermal properties of 
Lennard-Jones (LJ) fluid for an isoenthalpic-isobaric [ H P N ]  ensemble under hydrostatic 
pressure, for which the dynamic tensor h reduces to a scalar [12]. In this calculation, for 
a given temperature and specified external pressure, the volume of the system will 
automatically adjust to a correct value. The thermal expansion coefficient can be cal- 
culated from the cross fluctuation of the product of kinetic energy and volume as given 
by Ray et al [ll]. An alternate method of obtaining the thermal expansion coefficient 
for a microcanonical ensemble developed by Ray and Graben [ 131 is also based on a 
fluctuation theory, but requires prior use of an [ H P N ]  ensemble [9]. 

The more sophisticated methods are useful for extensive M D  calculations of thermal 
expansion coefficients. However, in many applications, a simple and efficient method 
for including thermal expansion is more desirable in terms of easy implementation in 
computation and at the same time treating basic physics correctly as done with the 
comprehensive methods mentioned above. We shall develop such a method and apply 
it to the cases of rare gas and ionic solids. We shall also propose to use the equipartition- 
of-energy theorem as a criterion for monitoring thermal equilibrium of a solid at low 
temperatures. At high temperatures, the deviation from energy equipartition can occur 
due to the anharmonic forces. Therefore, we will give a simple classic theory which 
allows us to calculate the amount of the deviation and compare with MD results. 

2. Method 

First, we use the well-known LJ potential for the atomic interaction. The strength E and 
size 0 parameters are taken to be for argon [14]. We shall also apply MD calculations to 
other rare gas solids and ionic crystal NaCl as discussed in section 3. An FCC lattice 
structure is used, and a leap-frog algorithm [7] is employed to solve atomic trajectories. 
The time step is At = 0.05 ps, compared to the Debye period 0.6 ps for argon. In 
addition, we use a cut-off distance rc = 2.0~1, where a is the lattice parameter. Primarily, 
we include 256 atoms in the computational cell and apply periodic boundary conditions 
in all the three directions. 

Initial atomic velocities are generated by using a Monte Carlo method according to 
the Maxwellian distribution rather than a uniform distribution as done by Anastasiou 
and Fincham [7]. After preliminary values are selected for atomic velocities, corrections 
are applied to adjust the total linear momentum of the system to zero, and then the 
velocities are rescaled to obtain the desired initial temperature. 
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For small oscillation of atoms, we can expand the potential energy per atom into a 
Taylor series around the minimum as 

A U = U - U , = c s 2 - g S 3 - f s 4 - h s 5  (1) 
where 6 = r, - ri0 is the displacement from the equilibrium position of the static lattice 
and c = & d U / d r 2  l l i , ,  , etc. In addition, U” is the cohesive energy per atom of the static 
lattice and equal to -8.6 E calculated from the FCC lattice summations given by Kittel 
[14]. At low temperatures the harmonic term in the expansion is dominant. Therefore, 
we can also generate initial atomic displacements with a Maxwellian distribution, and 
then rescale the displacements so that ch iMs = fkB T. In this manner, before the MD 
simulation, the microscopic state of a many body system is specified by appropriate 
distributions, thermal equilibrium is expected to be achieved rapidly. 

The pressure of the system is calculated by using the well-known virial theorem: 

P = (2K - Y))/3V ( 2 )  
where K is the kinetic energy, and V the volume of the system, and Y the virial. The 
potential energy and the virial are calculated in the same loop which is used to evaluate 
the forces for atoms within the cut-off distance rc. Therefore, it is necessary to include 
the long range corrections to these quantities to compensate for the omitted interactions 
r > r,. This is achieved by assuming a uniform average density of atoms at r > r,. These 
corrections are given below for three dimensions 

where u ( r )  is the pair potential, r, the cut-off distance, and N the number of atoms. 
As the temperature of the system increases, atoms have more kinetic energy, 

vibrational displacements are larger, and the pressure of the system becomes very 
high for a fixed volume. But the state of the system at constant volume (fixed lattice 
parameter), which is convenient for computational purposes, does not correspond to 
the usual experimental conditions for a solid. Nevertheless, one may have other objec- 
tives like simulations along an isochore. In this work, we wish to perform MD simulations 
according to usual experimental situations at a constant pressure of one atmosphere, 
which is essentially zero in terms of any substantial compression of the solid. Hence we 
develop a method below to adjust the lattice parameter so that the external pressure on 
our model system becomes effectively zero at each temperature. Because the bulk 
modulus of a crystal has very weak dependence on temperature [15], we assume it to 
be constant and use a value of B = 75.1 &/03 also calculated from the static lattice 
summations. After integrating the bulk modulus B = - V d P/dV, we find the volume 
of the system as a function of pressure: 

VIp=,, = Vexp(P/B) (4) 
where VIp=, is the volume at zero pressure. Since the volume is proportional to the 
lattice constant a ,  we obtain the following expression: 

= a exp(P/3B) (5  1 
where a lp=,  is the lattice constant at a non-zero temperature for zero pressure. Note 
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here alp,o is not the same as the static lattice parameter all. The method of relaxing 
lattice parameters for zero external pressure is easy to be implemented in MD simulations 
as we will discuss its application and the results in section 3.2. 

3. Discussion of results 

3.1. Equipartition of kinetic and potential energy 

With the initial conditions selected as described in section 2, the system is allowed to 
evolve for several hundred time steps (300) to reach thermal equilibrium. The criterion 
of establishing thermal equilibrium for the system at low temperatures is to monitor 
equipartition of the kinetic and potential energy. For a classical system, each degree of 
freedom for which the energy depends quadratically on the coordinate has an average 
energy ik,T. Hence at low temperatures, we expect both the kinetic and potential 
energy per atom to be equal to 4kBT. The potential energy per atom is expressed in terms 
of the difference between the total potential energy and the cohesive energy per atom 
U. of the static lattice: 

= 2 u(r)  - N U , , .  (6) 
pairs 

We illustrate in figure 1 the results of a computer simulation for the thermal equilibration 
of argon solid in terms of the kinetic, potential and total energy per atom as a function 
of time. The total energy is also given with respect to NUo. In figure l(a) the desired 
temperature is 10 K with a lattice parameter a = 5.26 A for zero external pressure. 
Equipartition of energy is readily observed, since the displacements of atoms around 
their equilibrium positions are small at this low temperature. With a small number 
of atoms, the root-mean-square fluctuations are about 3-5% of the thermodynamic 
quantities. Because of the properly chosen initial conditions, this figure shows no 
noticeable time lag for the partitioning of the kinetic and potential energy. 

At relatively high temperatures, the anharmonic terms in the expansion of the 
interatomic potential in equation (1) become more noticeable. As a result, the average 
potential energy becomes larger than the average kinetic energy at a finite temperature. 
Therefore, a deviation from equipartition of kinetic and potential energy should be 
obtained instead of exact equipartition of energy. We show this kind of potential energy 
deviation for MD calculations in figure l(b) for T = 50 K ,  which is approaching the Debye 
temperature - 81 K for argon. We can also work out a simple classical theory to compare 
to the MD results. By employing the Boltzmann distribution function, we expand the 
anharmonic terms in the exponent, as is commonly done for a similar treatment of 
thermal expansion [14]. The average potential energy per atom for one degree of 
freedom is given by 

AU = k g T / 2  + (3 f /4c2)k&T2 = k B T / 2  + q T 2  (7)  
where c andfare defined in equation (1). The first term is precisely the contribution from 
the harmonic term of the interatomic potential and gives the theorem of equipartition of 
energy. The second term shows the additional contribution from the anharmonic part 
of the potential at high temperatures. 

We have conducted a series of MD simulations for several temperatures. The MD 
results and comparison with the classical theory are given in table 1 for argon. The kinetic 
energy is also given for comparison. These results are obtained by averaging over 300 
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Figure 1.  M D  results of thermalization of argon 
system at ( a )  T = 10 K with a = 5.26 A and ( b )  
T = 50 K with a = 5.35 A.  The triangles. squares 
and circles are for total. kinetic and potential 
energies, respectively. 

Figure 2. M D  results on adjustment of lattice par- 
ameters to reduce pressure to zero for a desired 
temperature 70K.  ( U )  The total, kinetic and 
potential energies defined in figure 1 as a function 
of time. ( b )  The adjustment of pressure as a func- 
tion of time. 

Table 1.  Kinetic and potential energies, and lattice parameters as a function of temperature 
for argon. The energies are in units of lo-' eV/atom 

Potential energy Potential energy Lattice 
Kinetic energy (\ID results) (theory) parameter 

T ( K )  (lo-'  eV/atom) (lo-.? eV/atoni) ( I0- j  eV/atoni) (A) 

10 
20 
30 
40 
50 
60 
70 
80 

1.29 
2.58 
3.88 
5.17 
6.46 
7.76 
9.05 

10.34 

1.37 i- 0.07 
2.79 i- 0.16 
4.34 i- 0.32 
5.79 * 0.36 
7.20 t 0.23 
8.84 i 0.19 

11.02 t 0.31 
11.37 i- 0.39 

1.30 
2.61 
3.93 
5.26 
6.60 
7.96 
9.32 

10.70 

5.262 
5.282 
5.305 
5.328 
5.354 
5.381 
5.412 
5.442 

time steps. The  root-mean-square fluctuations are relatively large because of the short 
runs. A t  10 K, the kinetic and potential energies of MD calculations show agreement and 
this indicates that proper energy equipartition is achieved. A t  high temperatures, energy 
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equipartition is not satisfied as the potential energy deviates from the kinetic energy 
with temperatures. In the temperature region of about 20-40 K ,  the comparison for the 
potential energies between the MD results and theory the (equation (7)) shows some 
difference. This difference can be attributed to the fact that MD simulations actually 
employ the anharmonic atomic interaction whereas the theory only approximately 
provides some small corrections to the potential energy. As temperature increases 
further, the difference becomes more significant because the expansion in the simple 
classical theory completely breaks down. 

Since at high temperatures the potential energy is larger than the kinetic energy as a 
result of the anharmonic characteristics of the interatomic potential, we can actually 
allow the system to start with sufficient potential energy for a given temperature. We 
shall discuss in the next section how to obtain the appropriate lattice parameter for each 
temperature. In practice, we first use a harmonic approximation (as discussed in section 
2) to obtain initial atomic displacements and corresponding potential energy per atom 
oh. Then we scale the atomic displacements by 

dx,' = v @ t h / @ h  dx, (8) 
where @)th is the correct amount of potential energy as given in table 1. Also dx, is the x- 
component of the displacement for the ith atom before scaling the dx: after scaling. 
This method of obtaining initial atomic displacements is efficient even at higher tem- 
peratures. Figure l (b)  displays the application of this method for argon at T = 50 K. 

The use of the equipartition-of-energy theorem allows us to have quantitative con- 
firmation that the system reaches thermal equilibrium. We have applied the conventional 
method to carry out several molecular dynamics calculations with initial Maxwellian 
velocity distributions but no initial atomic displacements. As expected from the equi- 
partition-of-energy theorem at low temperatures, half of the initial kinetic energy is 
converted to potential energy as thermalization proceeds. It is observed that the system 
takes about 2 to 4 ps to reach thermal equilibrium (see figure 2). To establish a desired 
temperature, atomic velocities must be rescaled several times. After each velocity 
scaling, the thermal relaxation time (2 to 4 ps) is required to allow this input of kinetic 
energy to partition properly with potential energy. Furthermore, at higher temperatures, 
the number of times for scaling increases because of larger atomic vibrations, With a 
uniform initial velocity distribution and no atomic displacements a system even requires 
a much longer time to reach thermal equilibrium [7] .  It takes some time for the system 
to approach a Maxwellian distribution of atomic velocities, in addition to the relaxation 
time for partitioning of energy. Therefore, the method of introduction of initial atomic 
velocities and displacements with Maxwellian distributions has proven to be much more 
efficient for the establishment of thermal equilibrium of a many-body system. 

3.2. Thermal expansion at high temperatures 

In applying the lattice parameter relaxation method (see section 2) for MD simulations 
at high temperatures, we start with initial conditions with a desired temperature and 
static lattice parameter a. for a( T). During the first 60 steps without any -scaling, the 
pressure is very high as shown in figure 2(b) for a desired temperature 70 K. Then a is 
relaxed, and this sudden change of a increases the relative distances between atoms 
as well as the potential energy. Thus, the kinetic energy decreases. For a desired 
temperature, we alternatively adjust the lattice parameter a and rescale the atomic 
velocities at every 40 steps. Strictly speaking, adjustment of total linear momentum had 
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Figure 3. Thermal expansivity of argon solid as a function of temperature. CT denotes the 
results of a classic theory discussed in the text. a,, is the lattice parameter at T = 0. 

better be repeated after the adjustment, since momentum is a conserved quantity. We 
display the adjustments of the total, potential, and kinetic energies in figure 2(a) .  The 
deviation from energy equipartition at this high temperature is also evident. 

With several adjustments, the pressure is reduced to zero within the fluctuations as 
a suitable lattice parameter is obtained as shown in figure 2(b) .  The adjustment stops at 
200 steps ( t  = 10 ps), and then the system is allowed to run 100 steps ( t  = 5 ps) to reach 
the finalthermal equilibrium. Usingthismethod, we have performedaseriesofcomputer 
runs at different temperatures for argon and obtained the correctly adjusted lattice 
parameters given in table 1. 

We show MD results compared to experimental data in figure 3 for argon. Thermal 
expansitivity is defined as (a(  T )  - ao) /ao  where a( T )  and a( ,  are lattice parameters at a 
finite temperature and the reference temperature, respectively. The slope of these 
curves gives the thermal expansion coefficient. In this case, molecular dynamics results 
show good agreement with experimental results [ 151 in the temperature region ( T  = 30- 
70 K). 

The curve denoted by CT shows the results of a classical theory of thermal expansion 
given by Kittel [14]. The result is obtained by averaging atomic displacements with a 
Boltzmann distribution. We find the average displacement 6 is 

6 = 3gkB T/4c2 + 15hkiTZ/8c3 = UT + yT2 (9) 

where c,  g and h are the coefficients in the expansion of the interatomic potential as 
defined in equation (1). Since the value of y is very small, the quadratic term is not very 
evident in figure 3.  

When the temperature goes to absolute zero, the expansion coefficient vanishes as 
shown by the experimental data. Obviously, this indicates that molecular dynamics fails 
at low temperatures where quantum effects become important. Nonetheless, these 
results do show that the MD simulations fully reveal the anharmonic effect of the 
interatomic potential. Consequently, at high temperatures, MD can still produce the 
correct expansion behaviour as compared with experiment. The method has been 
applied to study krypton and xenon with the appropriate E ,  0, atomic mass, and the 
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Figure 4. Thermal expansivity of krypton as a function of temperature. 
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Figure 5. Thermal expansivity of xenon as a function of temperature 

simulation parameters. The MD results for krypton and xenon as shown in figures 4 and 
5 demonstrates less difference from experiment as the atomic mass increase since the 
quantum effects are less important for the heavier atoms. 

3.3. Thermal expansion in ionic crystals 
Our method of relaxing the lattice parameter has proven to work properly for rare gas 
solids. As a further test, we have applied the method to ionic crystals such as NaCl. In 
this context, we included 108 sodium and chlorine ions respectively in the computational 
cell. For the non-Coulomb interaction, the Born-Mayer-Huggins (BMH) potential is 
employed [ 7 ] .  The Coulomb interaction between ions is included by the means of the 
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Figure 6 .  Thermal expansivity of a NaCl crystal as a function of temperature. a,,is the lattice 
parameter a! T = 293.15 K.  

Ewald sum. Figure 6 shows thermal expansivity of NaCl at various temperatures for MD 
results and experiment [ 161. The comparison displays an even better agreement than for 
the case of rare gas solids. The LJ potential has an inverse twelfth power term for the 
repulsive part which is very steep at short range whereas the BMH potential employs a 
soft exponential form (but it has scaling problems). This difference may cause the very 
large thermal expansivities of the LJ model as compared with experiment. 

4. Conclusion 

The validity of the method for including thermal expansion is clearly established as 
demonstrated by the results of our MD calculations and their good agreement with 
experiments for both rare gas and ionic crystals. This direct approach treats basic physics 
correctly as the sophisticated methods and thus provides an alternative way to take 
thermal expansion into account in an efficient manner. We also outlined a method for 
initializing a MD simulation close to thermal equilibrium state by using a Monte Carlo 
method to obtain initial atomic velocities and displacements with Maxwellian distri- 
butions. The results showed that the system reaches thermal equilibrium in a relatively 
short time with these realistic initial conditions. The equipartition-of-energy theorem is 
satisfied at low temperatures where the harmonic force dominates. Thus, it can be used 
as a quantitative measure for thermal equilibrium of a solid under low-temperature 
conditions. The deviations from energy equipartition due to the anharmonic charac- 
teristics of the atomic interaction are observed at high temperatures. The MD results for 
these deviations are larger than those calculated from a classic theory given in this work. 
The deviations can be an interesting subject for simulations with better statistics. 
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